Max Min Ant System For The Quadratic Assignment Problem

  • [1]

    R. Battiti and G. Tecchiolli. The Reactive Tabu Search. ORSA J. Cornput., 6(2):126–140, 1994.CrossRefGoogle Scholar

  • [2]

    J.J. Bentley. Fast Algorithms for Geometric Traveling Salesman Problems. ORSA J. Comput., 4(4):387–411, 1992.CrossRefGoogle Scholar

  • [3]

    H. Bersini, M. Dorigo, S. Langerman, G. Seront, and L. Gambardella. Results of the First International Contest on Evolutionary Optimisation. Technical Report IRIDIA/96-18, IRIDIA, Université Libre de Bruxelles, 1996.Google Scholar

  • [4]

    K.D. Boese, A.B. Kahng, and S. Muddu. A New Adaptive Multi-Start Technique for Combinatorial Global Optimization. Oper. Res. Letters, 16:101–113, 1994.CrossRefGoogle Scholar

  • [5]

    B. Bullnheimer, R. Hartl, and C. Strauss. A New Rank Based Version of the Ant System: A Computational Study. POM Working Paper 3/97, University of Viena, 1997.Google Scholar

  • [6]

    R.E. Burkard, S. Karisch, and F. Rendl. QAPLIB — A Quadratic Assignment Problem Library. European J. Oper. Res., 55:115–119, 1991. Updated Version: http://fmatbhpl.tu-graz.ac.at/CrossRefGoogle Scholar

  • [7]

    V.-D. Cung, T. Mautor, P. Michelon, and A. Tavares. A Scatter Search based Approach for the Quadratic Assignment Problem. In Proc. IEEE Int. Conf. Evol. Comp. (ICEC’97), pages 165–170, 1997.Google Scholar

  • [8]

    M. Dorigo. Optimization, Learning, and Natural Algorithms. PhD thesis, Politecnico di Milano, 1992.Google Scholar

  • [9]

    M. Dorigo and L.M. Gambardella. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Trans. Evoluì Comp., 1:53–66, 1997.CrossRefGoogle Scholar

  • [10]

    M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by a Colony of Cooperating Agents. IEEE Trans. Systems, Man, and Cybernetics — Part B, 26(1):29–41, 1996.CrossRefGoogle Scholar

  • [11]

    A.N. Elshafei. Hospital Layout as a Quadratic Assignment Problem. Operations Research Quarterly, 28:167–179, 1977.CrossRefGoogle Scholar

  • [12]

    T.A. Feo and M.G.C. Resende. Greedy Randomized Adaptive Search Procedures. J. Global Optim., 6:109–133, 1995.CrossRefGoogle Scholar

  • [13]

    C. Fleurent and J.A. Ferland. Genetic Hybrids for the Quadratic Assignment Problem. In P.M. Pardalos and H. Wolkowicz, editors, Quadratic Assignment and Related Problems, pages 173–189. American Mathematical Society, 1994.Google Scholar

  • [14]

    L.M. Gambardella and M. Dorigo. Ant-Q: A Reinforcement Learning Approach to the Traveling Salesman Problem. In Proc. 12th Int. Conf. Mach. Learning, pages 252–260, 1995.Google Scholar

  • [15]

    L.M. Gambardella and M. Dorigo. Solving Symmetric and Asymmetric TSPs by Ant Colonies. In Proc. IEEE Int. Conf. Evolut. Comp. (ICEC’96). IEEE Press, 1996.Google Scholar

  • [16]

    L. Gambardella, E.D. Taillard and M. Dorigo. Ant Colonies for the QAP. Technical Report IDSIA-4-97, 1997.Google Scholar

  • [17]

    M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.Google Scholar

  • [18]

    M. Gorges-Schleuter. Asparagos96 and the Travelling Salesman Problem. In Proc. IEEE Int. Conf. Evolut. Comp. (ICEC’97), pages 171–174, 1997.Google Scholar

  • [19]

    W.E. Hart. Adaptive Global Optimization with Local Search. PhD thesis, University of California, San Diego, 1994.Google Scholar

  • [20]

    D.S. Johnson. Local Optimization and the Travelling Salesman Problem. In Proc 17th Coll. Automata, Lang. and Prog., volume 443 of LNCS, pages 446–461. Springer, 1990.Google Scholar

  • [21]

    D.S. Johnson and L.A. McGeoch. The Travelling Salesman Problem: A Case Study in Local Optimization. In E.H.L. Aarts and J.K. Lenstra, editors, Local Search in Combinatorial Optimization, pages 215–310. John-Wiley and Sons, Ltd, 1997.Google Scholar

  • [22]

    S. Karisch, personal communication.Google Scholar

  • [23]

    T.C. Koopmans and M.J. Beckman. Assignment Problems and the Location of Economic Activities. Econometrica, 25:53–76, 1957.CrossRefGoogle Scholar

  • [24]

    E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. The Travelling Salesman Problem. John Wiley & Sons, 1985.Google Scholar

  • [25]

    Y. Li, P.M. Pardalos, and M.G.C. Resende. A Greedy Randomized Adaptive Search Procedure for the Quadratic Assignment Problem. In P.M. Pardalos and H. Wolkowicz, editors, Quadratic assignment and related problems, pages 237–261. American Mathematical Society, 1994.Google Scholar

  • [26]

    S. Lin and B.W. Kernighan. An Effective Heuristic Algorithm for the Travelling Salesman Problem. Oper. Res., 21:498–516, 1973.CrossRefGoogle Scholar

  • [27]

    V. Maniezzo, M. Dorigo, and A. Colorni. The Ant System Applied to the Quadratic Assignment Problem. Technical Report IRIDIA/94-28, Université Libre de Bruxelles, Belgium, 1994.Google Scholar

  • [28]

    P. Merz and B. Preisleben. A Genetic Local Search Approach to the Quadratic Assignment Problem. Proc. Seventh Int. Conf. Genetic Algorithms (ICGA’97), pages 465–472, 1997.Google Scholar

  • [29]

    P. Merz and B. Freisleben. Genetic Local Search for the TSP: New Results. In Proc. IEEE Int. Conf. Evolut. Comp. (ICEC’97), pages 159–164, 1997.Google Scholar

  • [30]

    G. Reinelt. TSPLIB — A Traveling Salesman Problem Library. ORSA J. Comp., 3:376–384, 1991.CrossRefGoogle Scholar

  • [31]

    G. Reinelt. The Traveling Salesman: Computational Solutions for TSP Applications, Lecture Notes in Computer Science 840. Springer, 1994.Google Scholar

  • [32]

    T. Stützle and H. Hoos. Improving the Ant-System: A Detailed Report on the \(\mathcal{M}\mathcal{A}\mathcal{X} - \mathcal{M}\mathcal{I}\mathcal{N}\) Ant System. Technical Report AIDA-96-12, FG Intellektik, TH Darmstadt, August 1996.Google Scholar

  • [33]

    T. Stützle and H. Hoos. The \(\mathcal{M}\mathcal{A}\mathcal{X} - \mathcal{M}\mathcal{I}\mathcal{N}\) Ant System and Local Search for the Traveling Salesman Problem. In Proc. IEEE Int. Conf. Evolut. Comp. (ICEC’97), pages 309–314, 1997.Google Scholar

  • [34]

    T. Stützle and H. Hoos. Improvements on the Ant System: Introducing the \(\mathcal{M}\mathcal{A}\mathcal{X} - \mathcal{M}\mathcal{I}\mathcal{N}\) Ant System. In G.D. Smith, N.C. Steele, R.F. Albrecht, editors, Artificial Neural Networks and Genetic Algorithms, pages 245–249, Springer Verlag, Wien, 1998.CrossRefGoogle Scholar

  • [35]

    É.D. Taillard. Comparison of Iterative Searches for the Quadratic Assignment Problem. Location Science, 3:87–105, 1995.CrossRefGoogle Scholar

  • [36]

    É.D. Taillard. Robust Taboo Search for the Quadratic Assignment Problem. Parallel Computing, 17:443–455, 1991.CrossRefGoogle Scholar

  • [37]

    N.L.J. Ulder, E.H.L. Aarts, H-J. Bandelt, P.J.M. van Laarhoven, and E. Pesch. Genetic Local Search Algorithms for the Travelling Salesman Problem. In Proc. 1st Int. Workshop Parallel Problem Solving from Nature (PPSN), Lecture Notes in Computer Science 496, pages 109–116. Springer, 1991.Google Scholar

  • Please, wait while we are validating your browser

    0 thoughts on “Max Min Ant System For The Quadratic Assignment Problem

    Leave a Reply

    Your email address will not be published. Required fields are marked *